二叉树算法 - 红黑树的动态平衡实现原理分析

- 2 mins

数据结构与算法系列(三十六)

插入节点

红黑树规定,插入的节点必须是红色的。而且,二叉排序(查找)树中新插入的节点都是放在叶子节点上。首先,我们来看两种最简单的情况:

除此之外,其他情况都会违背红黑树的特性,所以我们需要进行动态调整,与平衡二叉树不同,调整的过程除了左右旋转之外,还涉及到节点颜色的调整。

新节点插入之后,如果红黑树的平衡被打破,那一般会有下面三种情况。我们只需要根据每种情况的特点,不停地调整,就可以让红黑树继续符合定义,也就是继续保持平衡。

有了前面平衡二叉树的铺垫,相信理解起来红黑树的构建过程将会更加轻松。为了方便表述,我们把正在处理的节点叫关注节点。

CASE 1:如果关注节点是 a(待插入节点),它的叔叔节点(父亲的兄弟节点,从二叉排序树的角度来说叫伯伯节点更合适?) d 是红色,我们就依次执行下面的操作:

img

CASE 2:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的右子节点,我们就依次执行下面的操作:

img

CASE 3:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的左子节点,我们就依次执行下面的操作:

img

注:在看上面三个 CASE 的时候要动态的去看,从 CASE 1 跳到 CASE 2 或 CASE 3,或者从 CASE 2 跳到 CASE 3,或者从 CASE 3 开始,不要分割开来。如果从 CASE 1 跳到到 CASE 2 或 CASE 3,后两者的关注节点 a 就是 CASE 1 中最终的关注节点 c。

删除节点

删除节点的平衡调整更加复杂,可以分为两步,第一步是针对删除节点初步调整。初步调整只是保证整棵红黑树在一个节点删除之后,仍然满足最后一条定义的要求,也就是说,每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;第二步是针对关注节点进行二次调整,让它满足红黑树的第三条定义,即不存在相邻的两个红色节点。

1、针对删除节点的初步调整

这里需要注意一下,红黑树的定义中「只包含红色节点和黑色节点」,经过初步调整之后,为了保证满足红黑树定义的最后一条要求,有些节点会被标记成两种颜色,「红-黑」或者「黑-黑」。如果一个节点被标记为了「黑-黑」,那在计算黑色节点个数的时候,要算成两个黑色节点。

CASE 1:如果要删除的节点是 a,它只有一个子节点 b,那我们就依次进行下面的操作:

img

CASE 2:如果要删除的节点 a 有两个非空子节点,并且它的后继节点就是节点 a 的右子节点 c

img

CASE 3:如果要删除的是节点 a,它有两个非空子节点,并且节点 a 的后继节点不是右子节点,我们就依次进行下面的操作:

img

2、针对关注节点的二次调整

经过初步调整之后,关注节点变成了「红-黑」或者「黑-黑」节点。针对这个关注节点,我们再分四种情况来进行二次调整。二次调整是为了让红黑树中不存在相邻的红色节点。

CASE 1:如果关注节点是 a,它的兄弟节点 c 是红色的

img

CASE 2:如果关注节点是 a,它的兄弟节点 c 是黑色的,并且节点 c 的左右子节点 d、e 都是黑色的

img

CASE 3:如果关注节点是 a,它的兄弟节点 c 是黑色,c 的左子节点 d 是红色,c 的右子节点 e 是黑色,我们就依次进行下面的操作:

img

CASE 4:如果关注节点 a 的兄弟节点 c 是黑色的,并且 c 的右子节点是红色的,我们就依次进行下面的操作:

img

为什么叶子节点都是黑色的空节点

你可能会好奇,为什么叶子节点都是黑色的空节点,其实这就是为了红黑树实现起来更方便。只要满足这一条要求,那在任何时刻,红黑树的平衡操作都可以归结为我们刚刚讲的那几种情况。

不要担心这么做会浪费存储空间,因为其实只要一个空节点就好了,然后把所有父节点指针指过来就好了。

注:以上红黑树的动态平衡过程主要参考了极客时间王争的算法专栏相应教程。关于红黑树的实现原理,了解其大致实现过程就好了,如果觉得复杂,看不懂,也没啥关系,毕竟基本上不会遇到手动实现红黑树的场景。

rss facebook twitter github gitlab youtube mail spotify lastfm instagram linkedin google google-plus pinterest medium vimeo stackoverflow reddit quora quora